
The Impact of Estimation: A New Method for
Clustering and Trajectory Estimation in Patient

Flow Modeling

Chitta Ranjan, Kamran Paynabar
H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology , Atlanta, Georgia, USA,

nk.chitta.ranjan@gatech.edu, kamran.paynabar@isye.gatech.edu

Jonathan E. Helm
Arizona State University, W.P. Carey School of Business, Department of Supply Chain Management , 300 E. Lemon St., Tempe,

AZ 85287, USA, jonathan.helm@asu.edu

Julian Pan
Lean Care Solutions Corporation Pte. Ltd , 28 Ayer Rajah Crescent #03-01, Singapore 139959, Singapore, jp@leancaresolutions.com

T he ability to accurately forecast and control inpatient census, and thereby workloads, is a critical and long-standing
problem in hospital management. The majority of current literature focuses on optimal scheduling of inpatients, but

largely ignores the process of accurate estimation of the trajectory of patients throughout the treatment and recovery pro-
cess. The result is that current scheduling models are optimizing based on inaccurate input data. We developed a Cluster-
ing and Scheduling Integrated (CSI) approach to capture patient flows through a network of hospital services. CSI
functions by clustering patients into groups based on similarity of trajectory using a novel semi-Markov model (SMM)-
based clustering scheme, as opposed to clustering by patient attributes as in previous literature. Our methodology is vali-
dated by simulation and then applied to real patient data from a partner hospital where we demonstrate that it outper-
forms a suite of well-established clustering methods. Furthermore, we demonstrate that extant optimization methods
achieve significantly better results on key hospital performance measures under CSI, compared with traditional estimation
approaches, increasing elective admissions by 97% and utilization by 22% compared to 30% and 8% using traditional esti-
mation techniques. From a theoretical standpoint, the SMM-clustering is a novel approach applicable to any temporal-spa-
tial stochastic data that is prevalent in many industries and application areas.
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1. Introduction

The mismatch between demand for and supply of
medical services caused by high hospital census
variability has challenged hospital managers for
decades. High census variability is a common
problem in hospitals and healthcare centers around
the world. This problem leads to poor quality of
care, blocking in hospital wards, increase in inpa-
tient length of stay, and ultimately causes signifi-
cant increase in cost for both patient and hospital
(Helm and Van Oyen, 2014). Aiken et al. (2002)
studied the effect of overloaded nursing staff
induced by census variability and showed its effect
on mortality rate, nurse burnout and job dissatis-
faction. A common approach to managing census
variability in practice involves hospitals procuring
excess resources including material, staff, and

equipment, leading to frequent instances of under-
utilization for very expensive resources (Griffin
et al. 2012). A better approach is to optimize the
utilization of available hospital resources based on
patient census estimations. This long-standing
problem has been termed the Hospital Admission
Scheduling and Control (HASC) problem, which can
be decomposed into two main steps: census model-
ing (CM) and resource scheduling (RS). CM estimates
distributional information (typically mean and vari-
ance) on patient census at the ward level, which is
used as an input to the RS to find the optimal
resource allocation plans and schedules for elective
inpatient admissions.
A significant body of work addresses the RS

through a variety of optimization approaches; how-
ever, research on effective census models that
integrate with RS is less developed. In this study,
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we develop a CM method that integrates well with
existing RS methods to solve the HASC. We further
demonstrate the importance of the CM component
with respect to the outcomes of the RS optimiza-
tion; a factor that has, to our knowledge, been
unaddressed in the current literature. Namely, we
show, through computational experiments and a
case study based on data from our industry part-
ner, that the CM method typically employed in RS
optimization papers leads to markedly inferior opti-
mization results. To conclude this section, we give
a short description of the current state of the hospi-
tal census forecasting and optimization industry
from the experiences of our industry co-author and
CEO of a healthcare analytics company. Then we
discuss challenges posed by the gaps in CM theory
that represent a major hurdle for this burgeoning
industry and discuss how our approach seeks to
bridge those gaps.

1.1. Real-World Challenges in the Hospital Census
Forecasting Industry
Predicting future hospital census levels is a key chal-
lenge in the Hospital Admission Scheduling and Con-
trol (HASC) problem. Without accurate forecasting
mechanisms, controlling the variability in hospital
census becomes difficult and creates a major barrier
to low-cost, high-quality inpatient care. These conse-
quences of inadequate forecasting are drawn from
real-world experience, where our co-author has
worked with clients and collaborators globally—Asia,
Europe, and North America. All the hospitals he has
worked with experience significant mid-week conges-
tion and high levels of blocking.
Current methodologies used in hospitals are inef-

fective to solving the HASC problem. Almost all the
hospitals have lean teams focused on process
improvement and some of the bigger hospitals have
small analytics teams that use rudimentary models
which are ineffective at implementing changes made
to solve the HASC problem. All the work done at the
hospital level are reactive models (predicting census
levels using historical census means, and applying
control by canceling surgeries the day before) vs.
proactive models (implementing control measures in
advance). Recently, some hospitals have been
attempting to shift to proactive measures. This has
typically involved increasing capacity and lowering
utilization, which is cost-prohibitive in the long run.
The real solution is to improve the forecasting tech-
nology. The methods outlined in this study have pro-
ven to be effective on a conceptual level with results
shared in the later sections.
Our collaborator, Lean Care Solutions Corpora-

tion, is one of the first to provide a patient-level
forecasting tool; that is, predicting individual flows

and trajectories of each type of patient entering the
hospital. A patient-level forecasting and control tool
is imperative for hospitals to effectively solve the
HASC problem. While forecasting is the backbone
to the solution, Lean Care Solutions also provides
the ability for hospitals to create what-if scenarios
by modifying admission plans and schedules and
to use optimization techniques to customize a
dynamic admission plan to minimize blocking and
surgical cancelations. This type of analysis and
decision support is only possible through patient-
level forecasting, as it requires understanding how
patient-by-patient modifications to the admission
schedule impact hospital census and blocking. This
is precisely the type of forecasting that we propose
in this study. In fact, workload forecasting is not
only useful for bed planning purposes but is also
key to allocating resources to the various functions
of the hospital. Most notably, workforce planning
for front and back end staff accounts for over 50%
of hospital costs. Based on the feedback received
from Lean Care Solutions’ clients, properly allocat-
ing staffing reduces various costs, like overtime,
and improves staff satisfaction. Overall, it is one
key in keeping hospitals profitable and delivering
top quality healthcare. After discussing the various
needs of the hospitals, it is clear that the key issues
in patient flow management, staffing, and schedul-
ing all rely on the critical role of forecasting flexi-
bility and accuracy.
One ongoing challenge for Lean Care Solutions is

the issue of defining Patient Types (PTypes) and esti-
mating their probabilistic trajectories over the course
of their hospital stay, both of which have a major
affect on forecast accuracy. From a computational
standpoint, it requires clustering patients into groups,
where each group represents one type of patient. Cur-
rently, Lean Care Solutions employs various forms of
regressions to determine factors to group similar
patients together into clusters based on patient char-
acteristics. Many assumptions must be made to fit
data into logical PTypes that are scalable and yet give
enough information to statistically differentiate
patients and enable accurate forecasting. This
includes applying numerous heuristics and unfortu-
nately, sacrificing the accuracy of the forecast. At Lean
Care Solutions, this process is currently done manu-
ally for each hospital, often requiring weeks to
months of effort to properly tailor the PTypes for
accurate forecasting. These issues of scalability,
repeatability, and demonstrated statistical accuracy
represent one of the major hurdles for Lean Care Solu-
tions and other participants in the patient-level fore-
casting space. The methods presented in this study
help solve a key problem in parameterizing models
for each hospital. Specifically, by clustering patients
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based on trajectory (rather than extrinsic characteris-
tics as in current practice), this study significantly
improves upon the currently time-consuming and
heuristic step of assigning PTypes. Our approach is
shown to be scalable, statistically rigorous, accurate,
and repeatable. This eliminates the time-consuming,
gestalt guess work inherent in current practice and
has proven to significantly increase forecast accuracy
in addition to improving the results from current
decision support methods for admission scheduling.

1.2. Failures of Traditional CM Methods
As noted in Fetter et al. (1980) and Helm and Van
Oyen (2014), an appropriate HASC model should
have three characteristics: scalable to hospitals of any
size, consider ward interactions, and account for patient
heterogeneity. Most work in the RS step assumes that
patient types are given and uses simple methods for
estimating patient trajectories, then employs analyti-
cal techniques to capture key hospital metrics in an
optimization model. A patient trajectory is character-
ized by the transitions between wards in a hospital
and patient length of stay (LOS) in each ward, and
can be expressed as a stochastic function called a loca-
tion process that maps time to a set of locations—see
Figure 1 for an example of two sample path outcomes
of a location process.
While the optimization methods are generalizable,

the previous approaches to CM for RS optimization
lack scalability and are not well suited for capturing
patient heterogeneity. These approaches also suffer
from the limitation of not properly capturing ward
interactions, which is shown to be important in sec-
tions 4.2 and 5, where we compare our method with
traditional methods that fail to properly account for
ward interactions. In this study, we address these
issues by developing new methods for clustering

patient location processes based on historical patient
flow data.
As an example of how clustering impacts scalability

and patient heterogeneity, consider the following.
Many traditional approaches to HASC cluster
patients by their diagnosis-related group (DRG) or
admitting service. However, in working with a large
hospital such as our partner hospital, there can be
close to 100 such patient types with quite a few of
them being very rare. With such a large number of
patient types we have found that there is insufficient
data to properly estimate patient trajectories even
with two or more years of historical data. When fur-
ther including other important factors such as gender
and age, which have been found to be important in
determining a patient’s trajectory, data scarcity
becomes an even larger problem. Current solutions
include combining different patient types that are
deemed “similar” in order to have sufficient historical
data for trajectory estimation. This is a clustering prob-
lem. Deciding how to combine patient types, how-
ever, is a non-trivial effort considering the entire
location process (time and location) must be com-
pared to ensure an accurate pairing of two patient
types. For example, two patient types may have the
same average length of stay (LOS) in the hospital but
visit different wards. Another example is if two
patients visit similar locations with similar mean LOS,
but one has a skewed LOS distribution and the other
does not. These factors can all have a significant
impact on census forecast accuracy (see Littig and
Isken 2007). Because different hospitals have different
methods for categorizing patients (different admitting
services, DRGs served, etc.), this requires a lengthy
and ad-hoc procedure to be performed at each new
hospital, significantly impacting scalability. For exam-
ple, our industry co-author has indicated that this
process of clustering under current methods is unique
to each hospital and can take months to adequately
determine patient types in large hospitals.
A second problem is that once the patient types

have been identified, trajectories are assigned based
solely on what patient type the patient is identified as.
For example, if the patient is a bladder cancer surgery
patient their cluster will be bladder cancer surgery.
However, other factors that may impact the patient’s
trajectory and LOS, such as age and gender, cannot be
considered after the patient types are defined. This
approach is only as good as the granularity of each
cluster. However, the clusters are not defined based
on the shape of patients’ location functions, but rather
on other factors available in the data that are believed
to be associated with the shape of the location func-
tion, but have not been statistically validated. Finally,
clusters cannot be too granular or data will be insuffi-
cient. This phenomenon impacts both the ability to

Figure 1 Example of Sample Path Outcomes of a Stochastic Location
Process for Patient Flow [Color figure can be viewed at
wileyonlinelibrary.com]

Notes. The x-axis shows the time after admission, while the y-axis
denotes the ward the patient is in at time t; each step is a change of ward
for the patient.
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capture patient heterogeneity and to accurately esti-
mate patient paths because patients are forced into
predefined groups rather than assigned a type that
most closely matches their projected trajectory.
In contrast, we develop a new clustering approach

that clusters patients directly according to similarity
of their trajectories (which is what we want to esti-
mate) in a statistically rigorous manner, rather than
using these ad-hoc proxies (e.g., DRG, age, and gen-
der). Specifically, we seek to close the gap in the litera-
ture by developing new methods for the CM step that
provide more effective and scalable clustering of
patient types, and a better estimation of the patient
trajectories for each patient type. The proposed
model, which we call clustering and scheduling integra-
tion (CSI) is scalable, captures the interactions
between hospital wards, and is capable of handling
patient heterogeneity. CSI begins with the CM mod-
ule in which heterogeneous patients are clustered
based on the similarity of their trajectories. This pro-
vides patient types for accurate estimation of patient
trajectories and patient census distributions at the
ward level. Finally, these estimates serve as inputs to
the RS module to find an optimal hospital resource
schedule, which is then shown to outperform the
same optimization model using traditional CM
methods.
For CM, we propose a novel semi-Markov mixture

model (SMM) that integrates the mixture clustering
method and semi-Markov models accurately describ-
ing stochastic location processes of patient trajectory.
To the best of our knowledge, this SMM clustering
technique has not been proposed before in the litera-
ture, either for the HASC problem or any other prob-
lem. The SMM not only clusters patients based on
their trajectory but also provides accurate estimates
for the trajectory distribution of each group of
patients. In the RS module, the output of the CM is
fed into an MIP model similar to the model proposed
by Helm and Van Oyen (2014) to find the optimal
resource schedule for hospitals.
We further show through a case study using real

data from a partner hospital that system performance
is significantly impacted by the quality of the input
from the CM step. In fact, using CSI to parametrize
the optimization can enable up to a 50% increase in
elective admissions while maintaining the same level
of blocking and internal congestion when compared
with the same optimization using the traditional esti-
mation approach. Similarly, it is possible to have
higher ward utilization compared with traditional
CM approaches holding all other metrics constant.
The remainder of the study is organized as follows.

We first review the literature and position the study
in section 2. Next, we develop the new CSI methodol-
ogy in section 3, in which the SMM clustering method

for CM is discussed in detail, followed by a brief
description of the MIP model used for RS. Then in
section 4, we use simulation to validate the proposed
CSI model in terms of the accuracy of estimates and
the optimality of solutions. In section 5, we apply our
CSI methodology in a case study based on historical
data from a partner hospital. Finally, in section 6, we
conclude the study and discuss future opportunities.

2. Literature

Most existing research in the HASC area has focused
on either CM or RS separately. Little work can be
found on integrating CM and RS in a cohesive frame-
work. Additionally, existing HASC approaches lack
at least one of the aforementioned characteristics of
an effective HASC model. The aim of this study was
to develop an HASC framework that is scalable,
accounts for patient heterogeneity, and considers
ward interactions through effective integration of CM
and RS.
In the HASC literature, various stochastic and

deterministic models have been developed for RS.
Green (2006) and Armony et al. (2015) used queuing
models to optimize resource scheduling. Ward inter-
actions were not taken into account in either of these
papers. Unlike the queuing models, simulation mod-
els developed for RS are more flexible and consider
the interaction between wards, mostly by using
patient pathways between wards in a hospital. Exam-
ples of simulation-based models include Hancock
and Walter (1979, 1983), Griffith et al. (1976), Jacobson
et al. (2006), Harper and Shahani (2002), Zeltyn et al.
(2011), and Konrad et al. (2013). However, simulation
models are case-specific, cannot be easily generalized
or scaled, and rely on the same, less effective PType
and path estimation techniques mentioned earlier.
Adan et al. (2009), Bekker and Koeleman (2011), and
Zhang et al. (2009) used Mixed Integer Programming
(MIP) models for optimal RS. These works, however,
only focus on either one ward or an isolated feed-for-
ward subset of the hospital, ignoring ward interac-
tions. To address this issue, Helm and Van Oyen
(2014) proposed a non-heuristic MIP scheduling
model that also used patient pathways to model ward
interactions of an entire hospital. Although the RS
portion of the model is scalable and considers ward
interactions, it does not properly handle patient
heterogeneity. Moreover, an empirical method (simi-
lar to the traditional method described above) was
used to estimate the patient census at the ward level,
which we show can degrade the value of the optimal
solution.
For RS optimization to be maximally effective, an

accurate CM is required to estimate patient arrival
rates, their trajectory through the hospital, and, by
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combining arrival and trajectory, the patient census at
both the ward and hospital levels. Regression analysis
and time-series modeling have been widely used for
forecasting inpatient admissions and hospital occu-
pancy (Earnest et al. (2005) and Jones et al. (2002)).
Abraham et al. (2009) reviewed and compared sev-
eral models for forecasting daily emergency inpatient
admissions and occupancy. They found that the
admissions are largely random and hence non-pre-
dictable, whereas occupancy can be forecasted using
a model combining regression and ARIMA, or a sea-
sonal ARIMA, for up to a week ahead. Their model is
capable of forecasting the overall hospital occupancy,
but not the occupancy at the ward level. Conse-
quently, it does not account for ward interactions.
These approaches are also incapable of capturing
what-if scenarios or optimization with respect to inpa-
tient admission decisions. Littig and Isken (2007) used
occupancy flow equations to estimate occupancy at
different units or wards of a hospital. They predicted
patient in- and out-flow using time series and multi-
nomial logistic regression models. They combined
these predictions and fed them into a set of flow equa-
tions to find the net estimate of the number of patients
in a given ward. However, implementing this model
in real time presents a major challenge, as even a sim-
ple model requires coordination between a variety of
real-time data sources and the computational burden
of the method is high, so scaling this model to large
hospital would be difficult.
To model patient trajectory and LOS, Irvine et al.

(1994) and Taylor et al. (2000) proposed a continuous
time Markov model for geriatric patients. This model,
however, was developed for few wards and lacks
scalability. Moreover, the assumption that the LOS at
each ward follows the same exponential distribution
is not often a good model of reality. Faddy and
McClean (1999) used phase-type distributions for
patient flow modeling. They interpreted phase-type
distributions as a mixture of components (phases)
characterized by the severity of patient’s illness. Mar-
shall and McClean (2003) extended this idea and
developed a model based on Conditional Phase-type
distributions combined with a Bayesian network to be
able to include a network of inter-related variables
representing causality. In phase-type methods, it is
assumed that the process begins in the first phase and
may either progress through the phases sequentially
or enter an absorbing state (see Figure 2a). Conse-
quently, these methods cannot be extended to capture
patient trajectories, where patients revisit a ward sev-
eral times or transition from any ward to any other
ward, which is a significant feature according to our
data. Thomas (1968) and Kao (1972, 1974) proposed a
semi-Markov model to predict recovery progress of
coronary patients. This can model any hospital

system with complicated ward interactions in any
direction (See Figure 2b). Thus, this model has scalabil-
ity and can fully model ward interactions but is built
only for a “homogenous” mix of patients, that is,
coronary.
Patient heterogeneity is another challenge in CM.

To address this challenge, Helm and Van Oyen (2014)
partitioned patients into homogeneous clusters with
respect to their diagnosis using DRGs. DRGs have
been also used by Fetter et al. (1980) for regional plan-
ning. Harper (2005) provided a comprehensive
review on clustering techniques, including CART, k-
means, neural network, etc. that use more patient
attributes (e.g., age, sex, and diagnosis) to find more
homogeneous clusters. The main assumption of the
DRG and attribute-based methods is that patients
who belong to a cluster, follow a similar trajectory.
However, this is not necessarily true. Littig and Isken
(2007) showed that, patients with similar attributes
(e.g., age, sex, diagnosis, etc.) can often have very dif-
ferent trajectories. As an example from our own data,
Figure 8a in section 5 shows that although two
patients shared the same age, sex, and diagnosis, their
trajectories were very different.
In conclusion, the problem of trajectory estimation

from a heterogeneous cohort of patients is important.
To our knowledge, existing literature fails to address
at least one or more challenges among: scalability,
ward interaction, and heterogeneity. In the next sec-
tion, we develop a methodology to address all three
challenges and close this gap.

3. Clustering and Scheduling
Integrated (CSI) Model for HASC

Figure 3 provides a high-level overview of our
methodology. First, historical patient flow data,
taken from admit-discharge-transfer (ADT) records,
are used to group the patients based on their trajec-
tory using a semi-Markov Mixture (SMM) model-

(a)

(b)

Figure 2 Illustration of Patient Trajectory Models for a Hospital
System
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based clustering approach. The parameters for the
semi-Markov processes of patient trajectory for each
cluster are estimated as a part of the clustering pro-
cess. These stochastic location processes are then
combined with a model of the non-stationary
patient arrival process to form a stochastic process
(a Poisson arrival-location model or PALM, see
Massey and Whitt (1993)) that captures the ward-
network census. Estimation of this stochastic net-
work census process enables the derivation of three
important products for hospital managers: (1)
Descriptive: accurate census forecasting, (2) What-if
scenarios: impact of potential modifications to
admission schedules, and (3) Prescriptive: MIP-
based admission scheduling optimization.

3.1. Semi-Markov Mixture (SMM) Clustering for
Modeling Patient Trajectories
When a new patient arrives to the hospital, they
are initially assigned a bed in a hospital ward.
The patient stays at that ward for a stochastic
duration and then transfers to another ward or is
discharged from the hospital. This process repeats
if the patient is transferred to another ward of the
hospital.
A general hospital serves a cohort of many different

types of patients. Each type of patient requires differ-
ent services during their hospital stay. The first task is
to identify patient types through clustering. As men-
tioned previously, conventional clustering methods
are not applicable to this problem due to the fact two
patients with the same observed attributes often have
different trajectories.
To manage the heterogeneous mix of patients in a

hospital, we develop a semi-Markov mixture model
for clustering based on patient trajectory rather than
predefined groupings based on patient attributes.
Patients in each cluster are assumed to follow a semi-
Markovian trajectory through the hospital, which has
been validated in the literature (e.g., Hancock and
Walter (1983)). The SMM produces three important
products that significantly improve the generality and
scalability of our method: (1) appropriate patient

groupings based on trajectory, (2) the optimal number
of patient types, and (3) accurate trajectories for each
patient type. In section 5, we show that this approach
yields more efficient patient clusters and more accu-
rate trajectory models than traditional approaches.
Moreover, to the best of our knowledge, there is no
existing approach for developing a semi-Markov mix-
ture model and using it for clustering spatial-tem-
poral data.

3.1.1. SMM Model Structure. Let K be the set of
unknown patient types, where each patient type’s tra-
jectory follows a unique semi-Markov process. The
population of patient trajectory data, thus, follows a
mixture of an unknown number, jKj, of semi-Markov
processes. Each mixture component, which we call a
cluster henceforth, has a different semi-Markov pro-
cess distribution. The first step is to determine the set
of clusters (’ K) and estimate their corresponding tra-
jectory distributions.
Consider a sample of trajectory data for N patients

observed over a maximum time period of length T.
Time is measured by discrete units, for example, a
day, quarter of day, hour, to be chosen depending on
the desired granularity. The set of possible lengths of
stay is denoted by T ¼ f1; 2; . . .; Tg. Let U ¼ fU; �Ug
denote the set of all states (wards) where U is the set
of all transient states and �U is the set of all absorbing
states. The first state when the patient enters the sys-
tem (hospital) is called the initial state and the last
state, which is an absorbing state, indicates a patient’s
end of stay in the form of discharge or death. All the
states during the patient’s hospital stay are transient
states. The set of initial and transient states are the
same, as a patient may enter the hospital at any arbi-
trary location.
A patient n’s (n 2 N) trajectory is represented as

yðnÞ ¼ ðfu1; m1g; . . .; fuLðnÞ ; mLðnÞg; f�ugÞ, where ul 2 U
indicates the visited ward, ml 2 T is the length of stay
at the corresponding ward, �u 2 �U is the absorbing
state from where the patient leaves the hospital, and
subscript l; l ¼ 1; 2; ::; LðnÞ; indicates the sequence of
ward visits (state and ward are used synonymously in

Figure 3 Clustering and Scheduling Integrated (CSI) Model Overview
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this study). LðnÞ is the patient n’s path sequence
length. This model can capture general network
behavior, as there is no restriction on the number of
times a patient can visit any particular ward.
We formulate the problem by defining a set of

parameters, H ¼ fHðkÞg; k 2 K. Each Θ(k) is comprised
of the mixture weight, p(k), and semi-Markov process
parameters, {q(k), P(k), H(k)}, for the k-th mixture. The
mixture weight, p(k), denotes the probability of a ran-
domly chosen patient belonging to cluster k. Letting
z(n) be a hidden variable representing the cluster
index for patient n, then the mixture weight can be
expressed as, p(k) = pΘ(z = k). Also, Rk2KpðkÞ ¼ 1.
Of the remaining mixture parameters, qðkÞ ¼
fqðkÞu g; u 2 U , denotes the initial state probability. It
can be expressed as qðkÞu ¼ pHðu1 ¼ ujz ¼ kÞ, the
probability of the first state of a patient trajectory
being ward u given the patient belongs to cluster k.
The matrix PðkÞ ¼ ½Puj�; u; j 2 U is the transition prob-
ability matrix, where P

ðkÞ
uj ¼ pHðul ¼ jj ul�1 ¼ u; z ¼

kÞ, the probability of transitioning from ward u to j for
a patient in cluster k. Finally, HðkÞ ¼ ½HðkÞuj ðmÞ�;
u; j 2 U; m 2 T is a three-dimensional tensor repre-
senting the holding mass distribution, where
H
ðkÞ
uj ðmÞ ¼ pHðml ¼ mjul ¼ j; ul�1 ¼ u; z ¼ kÞ gives

the probability of a patient in cluster k spending m
time units in ward u before transitioning to ward j
(from u). As {q(k), P(k), H(k)} are probability distribu-
tions, the following hold:X

u2U
qðkÞu ¼ 1;

X
j2U

P
ðkÞ
uj ¼ 1; and

X
m2T

H
ðkÞ
uj ðmÞ ¼ 1: ð1Þ

Using this parameterization, we represent the
conditional probability of any patient n’s trajectory,
y(n), given it is generated by cluster k, in Equation
(2). The first part of the equation is the initial state
probability. The terms inside the product is the
transition probability times the holding time proba-
bility corresponding to the transition the patient
made, and the amount of time the patient spent at
the ward before transitioning.

pHðyðnÞjzðnÞ ¼ kÞ ¼pðu1jqðkÞÞ
YLðnÞ
l¼1

pðulþ1jul;PðkÞÞ

pðmljulþ1; ul;HðkÞÞ

¼ qðkÞu1
YLðnÞ
l¼1

PðkÞul;ulþ1 �H
ðkÞ
ul;ulþ1

ðmðiÞl Þ
n o

:

ð2Þ

Consequently, by considering the probability of
belonging to each cluster, k, the probability distribu-
tion function (pdf) of the SMM model with K com-
ponents is written as

pðyðnÞjHÞ ¼
X
k2K

pHðzðnÞ ¼ kÞpHðyðnÞjzðnÞ ¼ kÞ

¼
X
k2K

pðkÞ qðkÞu1
YLðnÞ
l¼1

PðkÞul;ulþ1 �H
ðkÞ
ul;ulþ1

ðmlÞ
n o" #

:

ð3Þ

Given an i.i.d. sample of N patient trajectories,
Y = {y(n);n = 1, . . ., N}, the likelihood function is,
thus, given by

pHðYÞ ¼
YN
n¼1

pðyðnÞjHÞ

¼
YN
n¼1

X
k2K

pðkÞ qðkÞu1
YLðnÞ
l¼1

PðkÞul;ulþ1 �H
ðkÞ
ul;ulþ1

ðmlÞ
n o" #

:

ð4Þ

The parameters of the SMM mixture model, Θ,
can be estimated by maximizing the (log)likelihood
function in Equation (4). However, if there is no
observed transition between any two states or no
instance of any particular length of stay, the likeli-
hood function becomes zero. To avoid this issue, we
use a Bayesian approach that assigns very small
prior probabilities to all model parameters, denoted
by p(Θ). Thus, according to Bayes rule, the posterior
probability for Θ can be expressed as
pðHjYÞ ¼ pðYjHÞpðHÞ

pðYÞ . Since p(Y) is independent of Θ,
it suffices to maximize the non-normalized posterior
log-likelihood in Equation (5) to obtain the optimal
Θ*, also known as the maximum a posteriori (MAP)
estimates of Θ.

H� ¼ argmax
H

log pðYjHÞpðHÞf g: ð5Þ

The optimization problem in Equation (5) does not
have a closed-form solution. Furthermore, the non-
normalized posterior log-likelihood function is non-
convex so Equation (5) cannot be solved using stan-
dard convex optimization methods. As a result, we
develop an iterative expectation-maximization (EM)
procedure in the following section to obtain the
parameter estimates.

3.1.2. Parameter Estimation via Expectation-
Maximization (EM). An Expectation-Maximization
(EM) algorithm is an effective approach for learning
maximum likelihood or maximum a posteriori (MAP)
estimates, where the likelihood is a function of unob-
served latent variables (in our case, z). It is an iterative
approach comprising of an Expectation (E-step) and
Maximization (M-step) in each iteration. In the E-step
of any iteration p, we obtain a lower bound on the
objective function by taking its expectation at the
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current parameter estimate, Θ(p). Then, in the M-step,
we re-estimate the parameters (update), to obtain
Θ(p+1), that maximizes the expectation from E-step.
This procedure results in an increase of the likelihood
function with guaranteed convergence under some
weak regularity conditions that are satisfied in most
practical situations (Wu 1983). The specific EM algo-
rithm we develop for the SMM mixture model is as
follows: E-step
We find the expected value of the maximum a pos-

teriori function in Equation (5) with respect to the cur-
rent parameter estimate, Θ(p), denoted by Q(Θ|Θ(p))
in Equation (6).

QðHjHðpÞÞ ¼ EHðpÞ ½logðpðYjHÞpðHÞ�: ð6Þ

For a simpler expression of the Q function in Equa-
tion (6), we define a membership probability distribu-
tion. Membership probability, denoted by Ωnk, is the
probability of observing any patient n’s trajectory,
y(n), generated by cluster k, given parameters Θ (see
Equation (8)).

XnkðHÞ ¼
pðkÞpHðyðnÞjzðnÞ ¼ kÞP

k02K p
ðk0ÞpHðyðnÞjzðnÞ ¼ k0Þ ; ð7Þ

XðHÞ ¼ ½XnkðHÞ�; n ¼ 1; . . .;N; k 2 K: ð8Þ

The Q function, can thus be expressed as,

QðHjHðpÞÞ ¼EHðpÞ logðpðYjHÞpðHÞ
� �

¼
XN
n¼1

X
k2K

XnkðHðpÞÞlog pðkÞpHðyðnÞjzðnÞ ¼ kÞ
h i

þ logpðHÞ

:

ð9Þ

M-step

In the maximization step, the parameters that maxi-
mize the Q function are estimated. The updated para-
meters are, thus,

Hðpþ1Þ ¼ argmax
H

QðHjHðpÞÞ
n o

: ð10Þ

To solve Equation (10), we will estimate the poster-
ior of the parameters using a Dirichlet prior probabil-
ity distribution for Θ, p(Θ). The Dirichlet distribution
is chosen because (1) the parameters of a first-order
semi-Markov mixture are in the form of multinomial
probabilities, which are suitably represented by
Dirichlet distribution, and (2) the conjugate of Dirich-
let is also a Dirichlet distribution, thus posterior com-
putation is straightforward.
For any set of multinomial parameters,

x = (x1, . . ., xm), such that Rm
i¼1xi ¼ 1; 0 � xi � 1, a

Dirichlet distribution is given by,

pðx1; . . .; xmja1; . . .; amÞ ¼
1

BðaÞ
Ym
i¼1

xai�1i ; ð11Þ

where ai’s are hyperparameters for x, and

BðaÞ ¼
Qm

i¼1 CðaiÞ
CðRm

i¼1aiÞ
, a constant factor for the Dirichlet

probability distribution function. Using the prior
probability distributions, assumption of indepen-
dence of parameters, and plugging Equation (2) into
Equation (9), we obtain the posterior distributions.
We show in Appendix A, the posterior distributions
are Dirichlet, and how to update parameters to max-
imize Equation (9). The derived expressions are
shown below,

pðkÞ ¼
PN

n¼1 XnkðHðpÞÞ þ a
ðkÞ
pP

k02K
PN

n¼1 Xnk0 ðHðpÞÞ þ a
ðk0Þ
p

h i ; 8k 2 K:

qðkÞu ¼
PN

n¼1 XnkðHðpÞÞjðu1; uÞ þ a
ðkÞ
q;uP

u02U
PN

n¼1 XnkðHðpÞÞjðu1; u0Þ þ a
ðkÞ
q;u0

h i ;
8u 2 U; k 2 K;

P
ðkÞ
uj ¼

PN
n¼1 XnkðHðpÞÞ�jujðyðnÞÞ þ a

ðkÞ
P;ujP

j02U
PN

n¼1 XnkðHðpÞÞ�juj0 ðyðnÞÞ þ a
ðkÞ
P;uj0

h i ;
8u; j 2 U; k 2 K;

H
ðkÞ
uj ðmÞ ¼

PN
n¼1 XnkðHðpÞÞ~juj;mðyðnÞÞ þ a

ðkÞ
H;ujðmÞP

m02T
PN

n¼1 XnkðHðpÞÞ~juj;m0 ðyðnÞÞ þ a
ðkÞ
H;ujðm0Þ

h i ;
8u; j 2 U; m 2 T ; k 2 K:

3.1.3. SMM-Clustering Algorithm. In this sec-
tion, we detail the specific algorithm for implement-
ing SMM clustering (see Algorithm 1) and discuss key
features such as sensitivity to initialization, identifia-
bility, computational complexity, and optimization
acceleration techniques. Additionally, an alternative
algorithm, which is approximate but faster, is given
in Appendix B.
As shown in Algorithm 1, we take the trajectory data

and the number of clusters as inputs. The estimation
procedure is initialized by randomly initializing Ω such
that the memberships of a patient among all clusters is
equal to 1. The Dirichlet prior hyperparameters, a(�), are
chosen as a small number and uniform for all parame-
ters (e is a small positive number, taken as 1e � 5 in
our experiments). Thereafter, iterative estimation is
done, where the membership probabilities and the
SMM parameters are updated in each iteration.
In our implementation, we set a termination condi-

tion so that the algorithm terminates after maxIter

Ranjan, Paynabar, Helm, and Pan: Semi-Markov Clustering for Patient Flow
8 Production and Operations Management 0(0), pp. 1–22, © 2017 Production and Operations Management Society

Please Cite this article in press as: Ranjan, C., et al. The Impact of Estimation: A New Method for Clustering and Trajectory Estimation
in Patient Flow Modeling. Production and Operations Management (2017), https://doi.org/10.1111/poms.12722

https://doi.org/10.1111/poms.12722


iterations. Iterations can also be performed until a
given measure of convergence. For example, conver-
gence can be measured in terms of either no change in
the objective function or hard cluster assignments of
the trajectories—that is, the clusters do not change
much between iterations. Tracking of cluster reassign-
ments (in each iteration) works better than tracking
the objective function, as the change in latter becomes
extremely small after few iterations. But, in practice,
having an upper bound for the number of iterations
(maxIter) is more useful due to potential identifiabil-
ity issues. Especially when the data size is large, it can
take a very long time for cluster reassignments of all
trajectories to stabilize between iterations. maxIter
serves as a reasonable trade-off between computation
time and accurate results, and hence is commonly
employed in many clustering implementations.
The runtime computational complexity of the algo-

rithm is linear in the length of sequences, the sample
size, the number of clusters, and the number of itera-
tions, that is, O(maxIter 9 KNL), where L is average
sequence length. This linear complexity makes the
implementation fast. Additionally, several steps in
the algorithm can be vectorized, for example, parame-
ter normalization, for increased speed. Computation
time can be further reduced by: (1) parallelization:
since the parameter update equations are indepen-
dent for each cluster, state, and length-of-stay, we can
split the computation across many computing nodes;
and (2) stochastic clustering: using a random subsam-
ple of data for parameter updating in each iteration.
Parallelization requires multiple computing nodes,
while the stochastic clustering is suitable when the
data sample is very large. A higher order Markov
clustering extension of our proposed model will
increase the computational complexity, and therefore
may require some or all of the above techniques for
tractable solution times.

Algorithm 1. SMM-Clustering Algorithm

Input: Trajectory data, Y={y(n);n=1,. . .,N}, number of clusters, K.
Initialize:
Ω random matrixN9K " s.t. sum of each row is equal to 1
ap e/K; aq  �

jUj�K ;
aP  �

jUj�jUj�K ; aH  �
jUj�jUj�jUj�K " Prior hyperparameters

for iter =1,. . ., maxIter do
Θ SMMPARAMETERS(Ω)
Ω MEMBERSHIPPROB(Θ)

end for
function MEMBERSHIPPROB(Θ)

Ω 0N9K

for k=1,. . .,K do
for n=1,. . .,N do
Fetch trajectory sequence, yðnÞ ¼ ðfu1; m1g; . . .; fuLðnÞ ; mLðnÞ g; f�ugÞ
Xn;k  pðkÞ � qðk Þu1

for l ¼ 1; . . .; LðnÞ do

(continued)

Xn;k  Xn;k � PðkÞul ;ulþ1 �H
ðkÞ
ul ;ulþ1 ðml Þ

end for
end for

end for
Xn;k  

Xn;kPK

k 0¼1 Xn;k 0
; k ¼ 1; . . .;K ; n ¼ 1; . . .;N " Normalizing for,PK

k¼1 Xn;k ¼ 1; 8n ¼ 1; . . .;N

return Ω
end function
function SMMPARAMETERS (Ω)
pðkÞ  ap þ

PN
n¼1 Xn;k ; k ¼ 1; . . .;K

pðkÞ  pðkÞ=
PK

k 0¼1 pk 0Θ Normalizing
q 0U�K ;P 0U�U�K ;H 0U�U�T �K
qðkÞu  aq; u 2 U; k ¼ 1; . . .;K
P
ðkÞ
u;u0  aP; u; u

0 2 U; u 6¼ u0; k ¼ 1; . . .;K
H
ðkÞ
u;u0 ðmÞ  aH; u; u0 2 U; u 6¼ u0; m 2 T ; k ¼ 1; . . .; K

for k=1,. . .,K do
for n=1,. . .,N do
Fetch trajectory sequence, yðnÞ ¼ ðfu1; m1g; . . .; fuLðnÞ ; mLðnÞ g; f�ugÞ
qz
ðnÞ

u1
 qz

ðnÞ

u1
þ Xn;k

for l ¼ 1; . . .; LðnÞ do
Pz ðnÞ

ul ;ulþ1
 Pz ðnÞ

ul ;ulþ1
þ Xn;k

Hz ðnÞ

ul ;ulþ1
ðml Þ  Hz ðnÞ

ul ;ulþ1
ðml Þ þ Xn;k

end for
end for

end forΘ Normalizing as per Eq. 1
for k=1,. . .,K do

qðkÞu  qðkÞu =
P

u02U q
ðkÞ
u 0 ;8u 2 U; k ¼ 1; . . .;K

P
ðkÞ
u;j  P

ðkÞ
u;j =

P
j 02U P

ðkÞ
u;j 0 ; 8u; j 2 U; k ¼ 1; . . .;K

H
ðk Þ
u;j ðmÞ  H

ðk Þ
u;j ðmÞ=

P
m02T H

ðkÞ
u;j ðm0Þ;8u; j 2 U; m 2 T ; k ¼ 1; . . .; K

end for
return Θ = {p(k),q(k),P(k),H(k);k=1,. . .,K}
end function
Output: Ĥ ¼ fĤðkÞg; k ¼ 1; . . .;K ; and cluster soft assignments Ω.

Similar to most other clustering methods, the SMM-
clustering results are sensitive to the initialization.
While some experts suggest using prior system
knowledge for initialization, such as DRGs, we feel
such an initialization may introduce bias into our
results; particularly because a main motivation for
developing this approach was that DRG clustering
was not sufficiently accurate in practice. We, there-
fore, recommend random cluster initialization. To
avoid potentially poor solutions resulting from a par-
ticular initialization, we perform multiple runs with
different random initializations and choose the solu-
tion with the highest final objective function.

3.1.4. Determining the Number of Clusters. To
determine the appropriate number of clusters, we
estimate the SMMmodel and compute the Q function,
which is analogous to the likelihood. We then increase
the number of clusters, jKj, by one at each iteration.
We stop when there is no significant change in the Q
function by adding an additional cluster (popularly
known as the elbow method). To eliminate redundant
clusters, we perform pairwise hypothesis tests with
controlled type-I error for the identified clusters. We
use the Chi-square hypothesis test developed by
Billingsley (1960, 1961) for comparing transition
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probabilities and Kolmogorov–Smirnov for compar-
ing the distributions on the initial state and the hold-
ing time. We merge any clusters that are found
similar by these tests and then perform the tests again
in iterative fashion until no redundant clusters are
detected. A similar approach for removing redundant
clusters was used by Weiss et al. (1982).

3.1.5. Trajectory Estimation for Each Cluster. After
parameter estimation, the next step is to estimate the
patient trajectory distributions which are character-
ized by the visited wards and length of stay at each
ward. Using the selected number of clusters and cor-
responding semi-Markov process estimates from our
EM algorithm, we compute the probability distribu-
tion of patient trajectory, denoted by CðdÞ ¼ ½cðkÞj ðdÞ�;
j 2 U; k 2 K and d = 1, 2, . . ., where cðkÞj ðdÞ is the prob-
ability that a patient of cluster k is in ward j after d
days (we use a day as a time unit for m). This distribu-
tion is one of the key inputs to the scheduling
optimization.
To estimate Γ(d) we use interval transition probabili-

ties, UðkÞ ¼ ½/ðkÞuj ðdÞ�; u; j 2 U; k 2 K and d = 1, 2, . . .,
where /ðkÞuj ðdÞ is the probability that a patient in cluster
k is in ward j on day d, given that the patient entered
the hospital in ward u. Recalling that, for a type k
patient, H

ðkÞ
uj ðdÞ is the holding time probability distri-

bution in ward u before transitioning to ward j and
P
ðkÞ
uj is the probability of transitioning from ward u to

j, then /ðkÞuj ðdÞ is computed as

/ðkÞuj ðdÞ ¼ P
ðkÞ
uj H

ðkÞ
uj ðdÞ þ duj

X
l2Unfug

X1
d0¼dþ1

P
ðkÞ
ul H

ðkÞ
ul ðd

0Þ

þ
X

l2Unfjg

Xd
d0¼1

P
ðkÞ
ul H

ðkÞ
ul ðd

0Þ/ðkÞlj ðd� d0Þ;

ð12Þ

where duj
1; u ¼ j
0; u 6¼ j

�
and /ðkÞuj ð0Þ ¼

1; u ¼ j
0; u 6¼ j

�
. A

patient starting in state u can be in state j on day d
either if the patient stays in ward u for d days before
transitioning to ward j (the first term of Equation
(12)), or u = j and they never left u during the per-
iod [0, d] (the second term of Equation (12)), or the
patient left u at least once and finally reached j by
day d (the third term of Equation (12)). Conse-

quently, cðkÞj ðdÞ can be expressed as sum-product of

all possible initial states to ward j (Equation 13).

cðkÞj ðdÞ ¼
X
u2U

qðkÞu /ðkÞuj ðdÞ; ð13Þ

c from Equation (13) becomes an input to the schedul-
ingmodel explained in next section. The semi-Markov

process estimates, Ĥ, can be used for finding the
length-of-stay distribution of each patient type as well
as the expected mean length of stay in each ward and
its variance. Equations to compute these are given in
the following subsection as they may be useful for
other research objectives or purposes.

3.1.6. Computing Patient Length-of-Stay Distri-
butions. Length-of-stay in a ward (V). For a patient
of type k, we estimate the expected days spent by
the patient in each ward using the indicator func-
tion on the interval transition probability Φ(k). Let
�VðkÞ ¼ ½�vðkÞuj �; u; j 2 U; k 2 K, where v

ðkÞ
uj denotes the

number of days the patient will spend in j given
their initial state was in ward u. The mean of v

ðkÞ
uj

can be computed using Equation (14) given below.

�v
ðkÞ
uj ¼

X1
d¼1

/ðkÞuj ðdÞ: ð14Þ

The second moment of v
ðkÞ
uj is given by

�v
2ðkÞ
uj ¼ �v

ðkÞ
uj ð2�v

ðkÞ
uj � 1Þ: ð15Þ

Thus, the variance of the days spent by a patient in
a state can be given by

�v
ðkÞ
uj ¼ �v

2ðkÞ
uj � ð�v

ðkÞ
uj Þ

2 8u; j 2 U: ð16Þ

Total hospital length-of-stay (LOS). To get the dis-
tribution on LOS for entire hospital stay, we calcu-
late the first-passage-time probabilities, denoted by
F. FðkÞ ¼ ½f ðkÞuj ðdÞ�; u; j 2 U; m ¼ 1; 2; . . .; k 2 K, where
f
ðkÞ
uj ðdÞ is the probability that the first passage from
state u to j will take exactly d days for patients of
type k. This event can occur if a patient makes a
direct transition from u to j on day d, or the
patient transitions to any other state l on any day
before d and then takes first passage from l to j.
The second component is recursive and thus takes
into account any number of transitions between
any states (except the absorbing state) to reach
state j from u in d days.

f
ðkÞ
uj ðdÞ ¼ P

ðkÞ
uj H

ðkÞ
uj ðdÞ þ

X
l2Unfjg

Xd

d0¼1 P
ðkÞ
ul H

ðkÞ
ul ðd

0Þf ðkÞlj ðd
� d0Þ:

ð17Þ

Using f
ðkÞ
u�u , where �u 2 �U, and the initial state proba-

bility q, we can get the distribution for LOS. f
ðkÞ
u�u

denotes the first-passage-probability for a patient’s
flow from any initial state u to a discharge state �u. If
the initial state is unknown then we use Eq. Eq. 18.
Otherwise if the initial state is known, say u, then
the distribution is given by f

ðkÞ
u�u itself.
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LðkÞðdÞ ¼
X
u2U

qðkÞu f
ðkÞ
u�u ðdÞ d ¼ 1; 2; . . .: ð18Þ

3.1.7. Elective and Emergency Inpatient Census
Model. In this section, we describe how we integrate
the semi-Markov stochastic location processes gener-
ated from our SMM method with different arrival
processes to create a stochastic ward census process.
This section, as well as section 3.2, presents an elective
scheduling optimization approach focused on hospi-
tal patient throughput (i.e., admission volume) and
congestion (e.g., bed block, off-ward placement of
patients) that is based on the work by Helm and Van
Oyen (2014). The purpose of these sections is to pro-
vide relevant background for possible applications of
our CM method in the hospital census forecasting
industry as described by our industry co-author. We
use the aforementioned optimization approach as a
proof of concept to test the value of our improved CM
method and demonstrate how our CM approach inte-
grates seamlessly with existing patient flow optimiza-
tions. These sections are, therefore, intentionally brief
and not intended to present new research in the area
of resource optimization.
There are two broad categories of patients that a

hospital serves, elective (EL) and emergency (EM). In
developing our census model, we separate the two
because in the optimization in section 3.2, emergency
arrivals are considered uncontrollable while the
scheduled elective arrivals become the primary deci-
sion variable. To integrate our SMM clustering and
trajectory estimates with the optimization as well as
the what-if scenarios of interest to the industry, we
run the clustering method on EL and EM patients sep-
arately. Hence each stream, EL and EM, will have its
own set of patient types, K, with their own trajectories
determined by our SMM.
As explained in previous sections (3.1.1–3.1.4), we

cluster the EL patients into homogeneous groups with
similar trajectories. Trajectory estimates, one for each
patient type (cluster), are computed using Equations
(12) and (13). Combining the EL arrival pattern with
the semi-Markov trajectory distributions for each
patient type, discussed in section 3.1.5, creates a
stochastic census process that can be used to calculate
the distribution on patient demand for beds at each
ward at any time, t. The exact distribution depends
on the arrival process.
For EL admissions, we consider a deterministic

arrival process, which, when combined with the
semi-Markovian patient trajectories, yields a Poisson-
Binomial distribution on bed demand at fixed time
point t. The deterministic assumption is an approxi-
mation of reality, but has been widely used in the lit-
erature due to the fact that elective arrivals are
controlled and scheduled in advance. Therefore, it is

(1) theoretically possible to achieve close to a deter-
ministic arrival stream, (2) it is highly beneficial to
patient flow for hospital managers to work toward
a deterministic elective arrival stream and should be
a management priority, (3) deviations from the
deterministic arrivals can be incorporated for certain
distributions and approximated for others—particu-
larly if the variance of the arrival pattern can be
adequately approximated as a linear function of the
mean.
We model the arrivals of emergency patients using

a non-homogeneous Poisson process that varies by
day of week. Combining these Poisson arrivals with
the semi-Markov stochastic location processes yields
a Poisson-arrival-location model (PALM) of emer-
gency census, (see Massey and Whitt (1993) for more
details). One feature of a PALM model is that the dis-
tribution on demand for beds in any ward for fixed t
follows a Poisson distribution.
Having defined the distribution on demand for

beds for emergency and elective patients, we now
briefly describe an optimization model from the lit-
erature (Helm and Van Oyen, 2014) that is subse-
quently used to demonstrate the importance of a
rigorous patient trajectory estimation procedure.
We designed our estimation approach to integrate
with optimization and what-if scenarios, with this
particular optimization being used as a proof of
concept that (1) our method integrates well with
current optimization approaches, and (2) our
method significantly improves the outcome of the
optimization when compared with traditional
approaches proposed for use with these types of
models.

3.2. Resource Scheduling (RS) MIP Model for
Elective Admission Scheduling
The RS model we use as proof of concept integrates
both EM and EL census models to capture metrics
such as blocking and off-ward placement of patients.
The two common objectives from the literature that
we focus on are as follows: (1) maximizing the num-
ber of elective admissions while constraining conges-
tion metrics and (2) minimizing the congestion (e.g.,
blocking) while maintaining patient throughput.
From a management perspective, the first objective
allows for increased revenue, while the second objec-
tive provides better access and consequently better
outcomes for patients. For ease of reference, we pre-
sent this optimization model in Appendix C.
This concludes the presentation of our CSI

approach. In the next section, we develop a simula-
tion to validate the accuracy of the SMM approach for
patient clustering and trajectory estimation and to
determine the impact of the SMM on optimal solu-
tions to the MIP model.
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4. SMM Validation and Impact on
Optimal Scheduling Solutions

In this section, we perform simulation studies to vali-
date the performance of SMMmethod.

4.1. Evaluating the Accuracy of the SMM Method
We begin with a detailed analysis of the functionality
and performance of our SMM method by performing
a simulation study of a hospital system with four
transient states (wards), U ¼ fu1; . . .; u4g and one
absorbing state (discharge/death) �U ¼ fDg. We later
expand upon this deep-dive to consider a variety of
other clustering systems. For the initial simulation,
flow sequences for 1000 patients were generated from
four different semi-Markov models (corresponding to
four different patient types), denoted by C

ð1Þ
s ; . . .; C

ð4Þ
s .

As two clusters could be different in P, H, and/or
both, we used the following setting that covers all
possible scenarios. In the data-generating model, C

ð1Þ
s

and C
ð2Þ
s have different P but same H, C

ð3Þ
s and C

ð4Þ
s

have same P and different H, while C
ð2Þ
s and C

ð3Þ
s have

different P and H. A pictorial representation of the
transition probability matrix combined with the initial
state probability is shown in Figure 4a. In these plots,
the darker the color, the higher the probability. The
component mixture weights, p, of the four clusters are
{0.17, 0.33, 0.25, 0.25}, respectively. Additionally, the
assignment probabilities in the generating distribu-
tions were set less than 0.7 to ensure that the simula-
tion output would be similar to that of a general
hospital scenario.
The proposed SMM mixture model was applied to

the generated data for various numbers of clusters
and the Q function was plotted against the number of
clusters, jKj as shown in Figure 5. As can be seen from
the figure, the absolute slope of the Q estimates

significantly drops at jKj ¼ 4 with estimated p̂ ¼
f0:169; 0:332; 0:253; 0:246g, which indicates that the
true number of clusters and mixture weights were
accurately identified by the SMM estimation model.
No similar clusters were found by the pairwise
hypothesis tests discussed in section 3.1.4. To assess
the accuracy of the estimated parameters p̂ðkÞ; q̂ðkÞ;
P̂ðkÞ; ĤðkÞ for each of the estimated clusters, we com-
pared them with the parameters of the data-generat-
ing model. The pictorial representation of estimated
and true probabilities is shown in Figures 4a and b,
respectively. The high degree of similarity between
the plots in these two figures implies a highly accu-
rate estimation of initial state and transition probabili-
ties. Additionally, we conducted Chi-square and
Kolmogorov–Smirnov tests to verify the equality of
estimated and true parameters. The p-values of these
tests reported in Table 1 are all greater than 0.05, indi-
cating that the equality of estimated and true parame-
ters (null hypothesis) cannot be rejected, that is, they
are statistically the same at a 95% confidence level. In
summary, all the results show a clear one-to-one
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Figure 5 Q Function Estimates Against Number of Clusters for the
Simulated Data [Color figure can be viewed at wileyonline-
library.com]

Notes. The improvement in Q estimate becomes insignificant after four
clusters.

(a) (b)

Figure 4 Pictorial Representation of Transition Probabilities as a Gray-Scale Heat-Map; With Higher Intensity of Gray for Higher Probability

Notes. The heat-map for generating and estimated cluster transition probabilities are shown side-by-side for visual comparison.
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mapping between estimated and generating (true)
cluster parameters, demonstrating the effectiveness of
our SMM clustering model at identifying the underly-
ing parameters of the patient flow system.
Next, we provide deeper insight into the functional-

ity of our SMM method by demonstrating the initial-
ization can impact performance and running our
method with multiple different random initializations
helps overcome this challenge. To do so, we explore
three scenarios with 4, 50, and 100 clusters, respec-
tively. The results are reported in Table 2. The table
shows the amount of patient data generated in each
scenario, and the mean and standard deviation of the
length of the simulated patient paths. We remove the
data where the path is of length 1 (i.e., the patient
arrived to the hospital in a ward for a single time unit
and left), since these patients would not be considered
hospital inpatients. The sample size remaining is
around 75–85% of the original sample (see column 4).
In this table, we show the clustering results from

different runs. Each run has a different random ini-
tialization. The number of iterations in each run was
capped at 50. The f1-score and accuracy are shown as
clustering performance measures. The results high-
light the differences in the clustering output for differ-
ent initializations. As expected, the value of objective
function corresponds to the accuracy levels—higher
the objective value, the higher the accuracy. The

bolded rows of the table indicate the solution that was
chosen (out of the five random initializations).
With respect to robustness, we found that the esti-

mates of SMM parameters in each run (in all three
scenarios) were found to be statistically similar to the
true underlying distributions. This shows that, while
the final cluster assignments may be sensitive to ini-
tialization, the output of interest, that is, the semi-
Markov parameters, are more robust to initialization.
As a precaution, however, we suggest multiple ran-
dom initializations as a means to avoid potentially
poor solutions that may be a result of a particular
initialization.
Additionally, we show the improvement in objec-

tive function and the reduction in cluster reassign-
ment (of trajectories) with each iteration in Figure 6.
The figure presents the result for the problem with 50
clusters. The figure shows that (1) the convergence of
the algorithm as the iterations progress, and (2) the
objective function reaches a upper bound quickly, but
the cluster assignments keep changing, although very
slightly. The latter observation indicates that multiple
cluster solutions gives about the same objective func-
tion, although the solution quickly becomes relatively
stable. This relates to the identifiability issue and
hence our recommendation of setting a maximum on
the number of iterations.

4.2. Evaluating the Impact of Patient Flow
Estimation on Scheduling Optimization
As discussed in sections 3.1.5 and 3.1.7, the MIP-
scheduling model for resource scheduling (RS) uses
the estimated trajectory distribution of each patient
type as an input. In this section, we study the impact
of a better patient path estimation on patient through-
put and ward utilization, which are the outcome of
RS. To do so, we compare the RS optimization solu-
tion using CSI with the true optimal (if the actual

Table 1 p-Values for Matched Cluster Parameters. Higher p-Values
Compared to the Significance Level Indicates that the Two
Compared Distributions were Same

i j q P H

1 2 0.99 0.54 0.99
2 3 0.99 0.17 0.83
3 4 0.99 0.23 0.98
4 1 0.99 0.29 0.99

Table 2 Clustering Results under Different Initializations

No of
clusters, K

No. of
patients, N

Path lengths’
l, r

No. of patient paths
with length >1 Run

F1-score
(%)

Accuracy
(%)

Objective
value

4 1000 43.2, 32.9 735 1 88.6 91.6 208.82
2 70.3 81.4 201.28
3 88.9 91.6 209.16
4 63.8 78.2 199.8
5 87.9 90.3 208.26

50 5000 47.5, 49.6 4165 1 90.8 92.4 620.21
2 71.4 85.7 601.09
3 90.2 91.9 619.82
4 90.7 92.4 620.02
5 71.8 85.1 601.11

100 10,000 51.4, 53.2 8504 1 74.6 86.7 1110.57
2 74.5 86.8 1110.21
3 88.4 90.3 1121.01
4 89.7 91.4 1121.89
5 74.6 86.5 1110.78

Note: The bold row corresponds to the proposed approach.
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distribution were known), and with four other com-
mon patient clustering methods: k-means clustering,
DRG-based clustering, Gaussian clustering, and Mar-
kov model-based clustering.
We compare our CSI method with the commonly

used attribute-based clustering methods: DRG-based
clustering and k-means attribute clustering. In these
methods, patients are first clustered into groups based
on the similarity of their personal and medical attri-
butes. While DRG-based clustering uses the patients’
diagnosis (disease) for grouping, k-means uses other
attributes like age, sex, etc. for a finer grouping. The path
distribution for each patient cluster are then estimated
empirically. Details are given inAppendices D–E.
There can be drawbacks to k-means clustering.

Sometimes the data density can be non-convex or
severely unbalanced, which affects the method’s
effectiveness. Hence, we also compare our method
with a Gaussian mixture distribution approach for
clustering the patients based on their attributes. We
also implement and compare our method with a mix-
ture Markov model-based clustering method (Cadez
et al. 2000). This Markov model clustering is different
from SMM due to its assumption that the holding
time distribution is independent of state transition.
The patient path distributions, computed from the

patient clusters, are supplied to the MIP model (the
maximum elective admission formulation presented in
section 3.2 and Appendix C). In Table 3, we present

the optimization results for the objectives of maximiz-
ing throughput and ward utilization for the same
three scenarios studied in the previous section; cluster
sizes K 2 {4, 50, 100}.
The table contains a row for “optimal”. Here the

“optimal” result is drawn by using the known true
underlying number of patient types and their path
distributions. This result serves as the baseline (or, the
upper bound in this case) to assess the performance
of other methods.
As shown in Table 3, the outcome from CSI is quite

close to the optimal. The Markov model is the next
best method, but falls well short of CSI. This is
because, similar to the SMM-clustering used in CSI,
the Markov model clustering also groups the patients
based on similarity in their paths. However, the per-
formance is worse than the one from SMM because it
assumes a same holding time distribution, that is, the
distribution on length-of-stay in a ward (before mov-
ing to another) is always the same. This means that
the Markov model is ignoring a critical feature of
ward interactions, that is, that holding time and ward
transitions are dependent.
The scheduling outcome from empirical patient

path distributions (derivation expressions in
Appendix E) drawn from attribute-based clustering,
viz. k-means, DRG, and Gaussian, were significantly
poorer than the optimal. Among them, Gaussian per-
formed the worst because of its ineffectiveness in
clustering categorical variables present in patient
attributes data.

4.3. Applying SMM-Clustering in Practice
In this section, we discuss some of the advantages
and disadvantages of the SMM clustering method
and what types of problems are best suited for apply-
ing our method.
The results of this simulation study show that the

proposed CSI yields a schedule in RS that is very near
the true optimal, and significantly outperforms exist-
ing HASC methods. Our SMM clustering model out-
performs traditional attribute-based clustering
methods specifically because it takes trajectories into
account in the clustering process. Attribute-based

Table 3 Percentage Increase in Service Level Metrics: Throughput from the Number of Elective Patient Admission, and Ward Utilization

K = 4 K = 50 K = 100

Throughput (%) Utilization (%) Throughput (%) Utilization (%) Throughput (%) Utilization (%)

(Optimal) 85 49 78 34 89 45
CSI 81 49 75 33 88 45
DRG 21 11 24 14 28 19
k-means 24 24 25 16 32 21
Gaussian 19 9 18 10 21 10
Markov 58 38 51 21 61 37

Note: The bold row corresponds to the proposed approach.

Figure 6 Improvement in Objective Function and Reduction in Cluster
Reassignment as the Algorithm Convergences [Color figure
can be viewed at wileyonlinelibrary.com]

Ranjan, Paynabar, Helm, and Pan: Semi-Markov Clustering for Patient Flow
14 Production and Operations Management 0(0), pp. 1–22, © 2017 Production and Operations Management Society

Please Cite this article in press as: Ranjan, C., et al. The Impact of Estimation: A New Method for Clustering and Trajectory Estimation
in Patient Flow Modeling. Production and Operations Management (2017), https://doi.org/10.1111/poms.12722

https://doi.org/10.1111/poms.12722


clustering, on the other hand, relies on an indirect
relationship between attributes and patient trajecto-
ries rather than directly employing trajectories as a
clustering approach. This highlights one of the key
innovations of our new method. Instructively, our
SMM-based clustering method also significantly out-
performs the Markov model-based clustering
method, which does consider patient trajectories. This
highlights a second innovation of our SMM method,
which is that we properly consider the interaction
between wards. That is, our method allows the hold-
ing time distribution and ward transitions to be
dependent, which is ignored in the Markov model-
based clustering method. In addition, SMM clustering
effectively differentiates between patients with differ-
ent lengths-of-stay at the wards. This more subtle
modeling difference turns out to have a significant
impact on model performance.
As a result, we find that our SMM-clustering

approach is most effective being applied to problems
with the following characteristics. First, our method
performs well in situations where individual charac-
teristics available in the data (e.g., age, sex, and co-
morbidity) are not adequately explanatory of trajecto-
ries. From a patient flow perspective, this feature is
highlighted by the example described by Figure 8.
Clearly, there are applications outside of patient flow
that share this feature.
Second, problems with complex and dependent

network interactions can cause simpler methods to
perform poorly, creating significant opportunity for
our method to outperform existing clustering meth-
ods. In particular, non-Markovian networks benefit
significantly from relaxing the Markovian assumption
in the clustering methodology, as ours does. Non-
Markovian networks are quite common in healthcare,
since a patient’s history has been shown in many con-
texts to correlate with future requirements and out-
comes. However, this feature is not unique to patient
flow systems.
Finally, in our context the output of interest is not

the clusters themselves, but rather the trajectory dis-
tributions derived from the clusters. We have shown
that our model is quite robust to local optima and ini-
tializations in terms of the overall trajectory distribu-
tions because near the optimal EM solution, clusters
may continue to change but the overall distributions
derived from each cluster remain relatively stable.
Our SMM clustering approach provides accurate
parameter estimates even if the cluster assignment of
all the training data is not the global optimal. This also
helps mitigate identifiability concerns, since different
many clustering solutions can generate very similar
holding time and transition distributions, which is the
output of interest. Thus, applications that rely on the
semi-Markov distributional output rather than the

actual clustering results themselves are best suited for
SMM.
SMM-clustering, however, does rely on Markovian

transitions between wards. While this is often not
strictly true in patient flow systems, much past litera-
ture has found this modeling assumption to be suffi-
ciently accurate. Performance may suffer, however, if
transitions are strongly history dependent, thereby
making the Markovian assumption a poor representa-
tion of reality. In such a situation, the trajectory data
can be tested for different orders of the Markovian
property and the state space may be able to be
expanded to restore the Markovian property if
necessary.
Another disadvantage is that, due to large number

of parameters to estimate, SMM-clustering requires
large amount of data. While, large amounts of data
and an underlying Markovian property is common
for patient flow problems, other methods such as in
Ranjan et al. (2016) can be incorporated to mitigate
data scarcity issues.

5. Case Study on Real Hospital Data

In this section, we will study the impact of our inte-
grated framework (CSI) on hospital resource opti-
mization at a partner hospital, and as a holistic tool
for the HASC problem. In particular, we focus on vali-
dating the trajectory estimation and RS models, as
forecasting arrival streams is out of the scope of this
study. Hence, we take the arrival stream as given in
order to independently evaluate the accuracy and
impact of trajectory estimation on the HASC problem.
We use historical data of patient admission and

transitions in a hospital with 55 wards including sur-
gical, ICU/CCU, medicine, neurology, oncology,
obstetrics, etc. Although, physically the hospital has
more than 55 wards, for simplicity several wards
were grouped based on expert prior knowledge about
their similarity. This system is a good example of a
complex hospital system with general ward network
structure, transfers, and blocking/congestion.
We obtained one year of data from 2012, with about

11,000 patients who stayed at least one night in the
hospital. The dataset includes the patient flow data,
length-of-stay at each ward, and patient attribute
data, for example, age, sex, diagnosis, etc. The ratio of
elective and emergency patients in the data is almost
equal. Patients have an average of 4.1 transfers before
leaving the hospital. We compare the performance of
the CSI model with that of the established clustering
and estimation approaches.
We begin with the CM step by applying SMM-

based clustering on patient trajectory data to identify
patient types. From Figure 7, we can infer that there
are 32 patient types. Again, no redundant clusters
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were found from pairwise hypothesis testing. The tra-
jectory probability distributions for each of these
patient types are computed using Equation (13).
Simultaneously conventional partition-based cluster-
ing methods, discussed above in section 4.2, viz.
k-means, DRG, and Gaussian clustering, are used to
cluster patients based on the patient’s attribute data.
While for DRG, the number of clusters is found

from the data (the number of diagnosis types), the cri-
teria for finding the optimal number of clusters with
k-means and Gaussian are rather subjective. There-
fore, in order to have a fair comparison, we use the
same number of clusters as chosen by SMM (i.e., 32
clusters). This does not affect the optimization in RS
even if we have a few redundant clusters, but pre-
vents the risk of suboptimal results due to under-esti-
mation of the number of clusters. Therefore, the
benefits demonstrated by this case study represent a
conservative estimate of the true potential benefits
when compared to an application to a hospital in the
real world. After performing the attribute-based clus-
tering, empirical trajectory distributions are estimated

for each patient cluster using the same approach
regardless of clustering method.
To verify our claims that two patients with similar

attributes may not follow the same trajectory, we
observed two patients who were put into the same
cluster using the k-means; they were both male,
aged between 55 and 65 years and were diagnosed
for heart disease. Their trajectories within hospital
are shown in Figure 8a. In this figure, patient#1
enters the cardiology ward, transitions to the
angiography center then to the neurology ward and
finally back to cardiology before leaving the hospi-
tal. Patient#2, on the other hand, begins their stay in
the surgical ward, transitions to the heart clinic, then
the ICU, then the operating theater, then to the ICU
again and finally back to the surgical ward before
being discharged. Although the observed attributes
for both patients show similar profiles and a heart
disease diagnosis, the trajectories followed by these
patients were very different. Observing their trajec-
tories more closely, one can see that patient#2 might
have had a severe heart condition, while patient#1
had a relatively milder heart condition only requir-
ing angiography.
When employing our SMM-clustering method,

we do not see such dissimilarity in patient trajecto-
ries within one cluster. As an example, Figure 8b
shows trajectories of a few patients from one of the
clusters identified by the SMM approach. Most of
the patients in this cluster enter the hospital either
in surgical or cardiology wards, then transition to
the heart clinic, ICU, operating theater, and finally
cardiology before leaving the hospital. There is one
case of patient#6 who entered the hospital in ortho
and spine center, but then followed similar trajec-
tory of going to heart clinic, ICU, operating theater,
and finally cardiology. This could be caused by a
heart condition developing during an orthopedic
admission, or possibly due to initial off-ward

(a) (b)

Figure 8 Trajectories of Patients Belonging to Same Cluster [Color figure can be viewed at wileyonlinelibrary.com]

Notes. It is observed that patients in SMM-based clusters follow more similar trajectories than k-means.

Figure 7 The Estimated Q Function against Increasing Number of
Clusters for the Real Data in Case Study [Color figure can
be viewed at wileyonlinelibrary.com]

Notes. It is observed that the improvement in Q function is not significant
after 32 clusters.
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placement (because the cardiology ward was full).
It is interesting to see that if we would have used
the conventional attribute based clustering this
patient would have been put into a orthopedic
related cluster, while the SMM approach was able
to identify the patient’s “true” cluster.
To test the impact of our SMM approach on the RS

optimization, we use the maximum elective admission
formulation given in section 3.2 and Appendix C. The
goal is to increase the volume of patients served
(throughput), thereby increasing revenues, while
maintaining the same level of service and access. The
results are shown in Table 4 for the CSI and other
methods relative to the baseline current elective
admission schedule of the partner hospital.
Our CSI method demonstrates a potential increase in

elective admissions of 97%, and an increase of 22% for
ward utilization. Similar to the simulation study, the
Markov clustering performs second best, with
improvements of 63% and 19% for throughput and uti-
lization, respectively. Among the other methods, k-
means performs the best, yet significantly worse than
CSI, with improvement of 30% and 8%. In practice,
attribute partition methods like k-means and DRG are
commonly used, though they leave much to be desired.
This case study of a partner hospital demonstrates

the importance of an accurate patient clustering and
trajectory estimation method, as using our CSI not
only provides a more accurate forecast of the hospital
stochastic workload process but also dramatically
improves optimization solutions. Furthermore, to the
best of our knowledge, our CSI method is the only
approach in the extant literature that has all the prop-
erties required for effective integration with admis-
sion scheduling optimization approaches: scalable to
hospital of any size, considers ward interactions, and
accounts for patient heterogeneity.

6. Conclusion

The Hospital Admission Scheduling and Control problem
is comprised of two main components: census model-
ing and resource scheduling. Previous work on this

long-standing problem has considered one or the
other, but not both. In this study, we develop a new
method based on semi-Markov model (SMM) based
clustering for identifying patient type clusters and
estimating cluster trajectory distributions that inte-
grates seamlessly with existing scheduling optimiza-
tion approaches. This integration is proven to be
extremely important, as optimal solutions using our
SMM approach dramatically outperform optimal
solutions using the traditional empirical estimation
techniques.
As a theoretical contribution, our novel approach

is able to model an entire hospital of any size as a
coordinated system with a complex, general net-
work of wards and patient transitions between
them. Furthermore, the model has been shown to be
scalable, accounts for ward interactions, and for
patient heterogeneity, which has not been previously
achieved by other methods in the literature. Further-
more, our SMM-clustering is a general purpose
algorithm applicable to any movement or sequence
data having spatial and temporal dimension, for
example, clickstream data of users on a website or
movement of cell-phone users among a network of
towers.
Our SMM approach was designed to integrate with

RS approaches that provide an optimal controllable
schedule by patient type for each day of week so this
approach can be adopted by any specialty or multi-
specialty hospital for streamlining their procedures,
stabilizing the operating environment for their per-
sonnel, improving utilization of hospital resources,
and enabling cost savings for both patients and hospi-
tals. The automated, algorithmic approach to cluster-
ing and trajectory estimation is also appealing
compared to ad-hoc, manual, and heuristic
approaches currently employed in practice (which
can take months to implement and are difficult to val-
idate statistically).
The SMM-clustering method was validated by sim-

ulating data from known generating mixture distribu-
tions. The SMM estimated clusters and their
distributions were found to be statistically the same
as the generating mixture distributions at a 95% confi-
dence level. Optimizing the elective schedule based
on inputs from our SMM method achieved outcomes
that were very close to the “true optimum” (i.e., given
perfect knowledge of patient flow dynamics), while
the existing traditional method gave performed sig-
nificantly worse.
A case study using real hospital data showed that

the number of elective admissions could be increased
by 97% (with the same level of access) compared to
only a 30% increase using traditional empirical meth-
ods (which are comparable to previous optimization
improvements reported in the literature). Moreover,

Table 4 Comparing the Percentage Improvement in Throughput
(Elective Admissions) and Ward Utilization (Workload) for
Proposed CSI and other Traditional Methods with Respect to
the Current Service and Workload Levels using Real Hospital
Data

Throughput (%) Utilization (%)

CSI 97 22
DRG 26 11
k-means 30 8
Gaussian 22 5
Markov 63 19

Note: The bold row corresponds to the proposed approach.
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the average ward utilization could be improved by
22% using our approach compared with only an 8%
improvement using the traditional approach.
In conclusion, our approach develops a novel

method for spatio-temporal clustering and trajectory
estimation that has a profound impact on an important
patient flow problem with the potential to improve
revenues and/or cost, quality, and access to care.
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Appendix A. Derivation of SMM-Cluste-
ring update Expressions for EM Algorithm
In this Appendix, we present the derivation of param-
eter update expressions for the EM algorithm in sec-
tion 3.1.2. As mentioned in the section, we have to
obtain the posterior distributions of the parameters to
find their optimal estimates that maximizes Equation
(9).
We use Dirichlet prior distributions, given in Equa-

tion (11), for the parameters. The Dirichlet hyperpa-
rameters for parameters in H ¼ fpðkÞ; qðkÞ;
PðkÞ; HðkÞg; k 2 K are denoted by faðkÞp ; a

ðkÞ
q ;

a
ðkÞ
P ; a

ðkÞ
H g; k 2 K, respectively. For each model parame-

ter, the hyperparameters can be set to equal values, if
there is no specific prior knowledge (non-informative
prior). Besides, we assume the parameters are inde-
pendent. Using it with the conditions on probability
sums equal to 1 in Equation (1) and parameter inde-
pendence assumptions gives the following expres-
sions for prior probabilities,
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Furthermore, using the parameter independence,
the prior distribution for Θ is,

pðHÞ ¼ pðpÞpðqÞpðPÞpðHÞ: ðA2Þ

Plugging Equations (A2) and (2) into Equation (9),
and using the hyperparameters mentioned in section
3.1.2, we get,

QðHjHðpÞÞ
¼ EHðpÞ logðpðYjHÞpðHÞ

� �
¼
XN
n¼1

X
k2K

XnkðHðpÞÞ log pðkÞpHðyðnÞjzðnÞ ¼ kÞ
h i

þ log pðHÞ

¼
XN
n¼1

X
k2K

XnkðHðpÞÞ log
"
pðkÞqðkÞu1

YLðnÞ
l¼1

�
PðkÞul;ulþ1 �H

ðkÞ
ul;ulþ1

ðmlÞ
�#

þ log pðpÞpðqÞpðPÞpðHÞ

¼
XN
n¼1

X
k2K

log pðkÞ
� �XnkðHðpÞÞ

qðkÞu1

� �XnkðHðpÞÞ
�

YLðnÞ
l¼1

PðkÞul ;ulþ1

� �XnkðHðpÞÞ
� HðkÞul;ulþ1

ðmlÞ
� �XnkðHðpÞÞ

� �#

þ log pðpÞpðqÞpðPÞpðHÞ

/log
Y
k2K

pðkÞ
� � PN

n¼1XnkðHðpÞÞþaðkÞp �1
	 
" #

þ
X
k2K

log
Y
u2U

qðkÞu

� � PN

n¼1XnkðHðpÞÞjðu1;uÞþaðkÞq;u�1
	 
" #

þ
X
k2K

X
u2U

log

�Y
j2U

�
P
ðkÞ
uj

� PN

n¼1XnkðHðpÞÞ�jujðyðnÞÞþaðkÞP;uj�1
� ��

þ
X
k2K

X
u2U

X
j2U

log

�Y
m2T

�
H
ðkÞ
uj ðmÞ



�
PN

n¼1XnkðHðpÞÞ~juj;mðyðnÞÞþaðkÞH;uj
ðmÞ�1

� ��

/log pðkÞ �Dirichlet
XN
n¼1

XnkðHðpÞÞþ aðkÞp

 !" #

þ log

"
qðkÞu �Dirichlet

 XN
n¼1

XnkðHðpÞÞjðu1;uÞþ aðkÞq;u

!#

þ log P
ðkÞ
uj �Dirichlet

XN
n¼1

XnkðHðpÞÞ�jujðyðnÞÞþ a
ðkÞ
P;uj

 !" #

þ log

�
H
ðkÞ
uj ðmÞ�Dirichlet

 XN
n¼1

XnkðHðpÞÞ~juj;mðyðnÞÞ

þ a
ðkÞ
H;ujðmÞ

�
ðA3Þ

where, j(x, y) is an indicator function equal to 1
if x = y, �jujðyðnÞÞ is the count function equal to
the number of times transition was made from
state u to j in trajectory y(n), and ~juj;mðyðnÞÞ is the
count function equal to the number of times tran-
sition was made from state u to j, in trajectory
y(n), when length of stay at state u was m time
units.
As shown in Equation (A3), the posteriors of the

model parameters are Dirichlet distributions with
updated hyperparameters. The posterior of any
Dirichlet variable, x1, . . ., xm�Dirichlet(a1, . . ., am) is
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maximized at E½xi� ¼ ai
Rm
i0¼1ai0

; 8i. Thus, the parameter

estimates to maximize Equation (9) are,

pðkÞðpþ1Þ ¼
PN

n¼1 XnkðHðpÞÞ þ aðkÞpP
k02K

PN
n¼1 Xnk0 ðHðpÞÞ þ a

ðk0Þ
p

h i ; 8k 2 K:

qðkÞðpþ1Þu ¼
PN

n¼1 XnkðHðpÞÞjðu1; uÞ þ a
ðkÞ
q;uP

u02U
PN

n¼1 XnkðHðpÞÞjðu1; u0Þ þ a
ðkÞ
q;u0

h i ;
8u 2 U; k 2 K

P
ðkÞðpþ1Þ
uj ¼

PN
n¼1 XnkðHðpÞÞ�jujðyðnÞÞ þ a

ðkÞ
P;ujP

j02U
PN

n¼1 XnkðHðpÞÞ�juj0 ðyðnÞÞ þ a
ðkÞ
P;uj0

h i ;
8u; j 2 U; k 2 K

H
ðkÞ
uj ðmÞ

ðpþ1Þ ¼
PN

n¼1 XnkðHðpÞÞ~juj;mðyðnÞÞ þ a
ðkÞ
H;ujðmÞP

m02T
PN

n¼1 XnkðHðpÞÞ~juj;m0 ðyðnÞÞ þ a
ðkÞ
H;ujðm0Þ

h i ;
8u; j 2 U; m 2 T ; k 2 K

:

Appendix B. Alternative Approximate
SMM-Clustering Algorithm
An alternate algorithm (Algorithm 2) for SMM-
Clustering is proposed here. This is an approxi-
mate but faster algorithm than Algorithm 1.
Algorithm 2 does a hard cluster assignment as
opposed to a soft assignment in the latter. Due to
this, a nested loop in function SMMPARAMETERS is
not needed. As a result, the computation here
reduces by a factor of K. Since this operation is
repeated in each iteration, the overall computation
time is significantly reduced in this approximate
implementation. Besides, the results are found to
be close to the results from Algorithm 1. Therefore,
if efficiency is critical, this alternate algorithm is
recommended.

Algorithm 2. Approximate SMM-Clustering Algorithm

Input: Trajectory data, Y={y(n);n=1,. . .,N}, number of clusters, K.
Initialize:

z ðnÞ  randð1;K Þ; n ¼ 1; . . .;N . " s.t. at least one trajectory
assigned to each k

Ω {1/K}N9K

ap e/K; aq  �
jUj�K ;

aP  �
jUj�jUj�K ; aH  �

jUj�jUj�jUj�K " Prior hyperparameters
for iter =1,. . ., maxIter do

Θ SMMPARAMETERS(Ω,z)
Ω MEMBERSHIPPROB(Θ)
z ðnÞ  arg maxk Xn;k ; n ¼ 1; . . .;N

end for
function MEMBERSHIP PROB(Θ)

Ω 0N9K

(continued)

for k=1,. . .,K do
for n=1,. . .,N do
Fetch trajectory sequence, yðnÞ ¼ ðfu1;m1g; . . .;fuLðnÞ ;mLðnÞ g;f�ugÞ
Xn;k  pðkÞ � qðkÞu1

for l ¼ 1; . . .; LðnÞ do
Xn;k  Xn;k � Pðk Þul ;ulþ1 �H

ðkÞ
ul ;ulþ1 ðml Þ

end for
end for

end for
Xn;k  Xn;kPK

k 0¼1 Xn;k 0
; k ¼ 1; . . .;K ; n ¼ 1; . . .;N " Normalizing for,PK

k¼1 Xn;k ¼ 1;8n ¼ 1; . . .;N

return Ω
end function
function SMMPARAMETERS (Ω,z)

pðkÞ  ap þ
PN

n¼1 1ðz ðnÞ ¼ kÞ; k ¼ 1; . . .;K

pðkÞ  pðkÞ=
PK

k 0¼1 pk 0 " Normalizing
q 0U�K ;P 0U�U�K ;H 0U�U�T �K
qðkÞu  aq; u 2 U; k ¼ 1; . . .;K
P
ðkÞ
u;u0  aP; u; u0 2 U; u 6¼ u0; k ¼ 1; . . .;K

H
ðk Þ
u;u0 ðmÞ  aH; u; u0 2 U; u 6¼ u0; m 2 T ; k ¼ 1; . . .; K

for n=1,. . .,N do
Fetch trajectory sequence, yðnÞ ¼ ðfu1; m1g; . . .; fuLðnÞ ; mLðnÞ g; f�ugÞ
qz
ðnÞ

u1
 qz

ðnÞ

u1
þ 1

for l ¼ 1; . . .; LðnÞ do
Pz ðnÞ

ul ;ulþ1
 Pz ðnÞ

ul ;ulþ1
þ 1

Hz ðnÞ

ul ;ulþ1
ðml Þ  Hz ðnÞ

ul ;ulþ1
ðml Þ þ 1

end for
end for Θ Normalizing as per Eq. 1

for k=1,. . .,K do
qðkÞu  qðkÞu =

P
u02U q

ðkÞ
u 0 ;8u 2 U; k ¼ 1; . . .;K

P
ðkÞ
u;j  P

ðkÞ
u;j =

P
j 02U P

ðkÞ
u;j 0 ; 8u; j 2 U; k ¼ 1; . . .;K

H
ðk Þ
u;j ðmÞ  H

ðk Þ
u;j ðmÞ=

P
m02T H

ðkÞ
u;j ðm0Þ;8u; j 2 U; m 2 T ; k ¼ 1; . . .; K

end for
return Θ ={p(k),q(k),P(k),H(k);k=1,. . .,K}
end function
Output:Ĥ ¼ fĤðkÞg; k ¼ 1; . . .;K ; and hard cluster assignments z.

Appendix C. Elective Scheduling
Optimization MIP Formulation
In this Appendix we present, an optimization
model from the literature (Helm and Van Oyen,
2014) that is used to demonstrate the importance of
a rigorous patient trajectory estimation procedure.
We designed our estimation approach to integrate
with optimization and what-if scenarios, with this
particular optimization being used as a proof of
concept that (1) our method integrates well with
current optimization approaches and (2) our
method significantly improves the outcome of the
optimization when compared with traditional
approaches proposed for use with these types of
models. We begin by describing the model parame-
ters and then present the optimization model with
brief description of the objective and constraints.
For a more detailed description of the optimization
approach, we refer the readers to Helm and Van
Oyen (2014).
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Sets
K set of all patient types
U set of hospital wards
Hospital parameters
f vector of ward capacities
g vector of total cancelations attributed for each ward
b limit on the average number of blockages per week
o vector of limit on the average number of

off-unit patients allowed for each ward
lðk Þd current elective admission volume of type

k patients on day d
�lðk Þd maximum number of elective admissions of

type k allowed on day d
R reward vector where Rk is the reward for

admitting patient oftype k
Patient trajectory
and census
distributions

cðk Þu ðd1Þ probability that an elective patient of type
k requires a bed inward u, d1 days after
admission (trajectory distribution)

pu,d(n) probability that there are n emergency
patients demanding a bedin ward u on day d

�pd ðnÞ probability that there are n emergency
patients demanding a bedin the hospital on day d

Decision Variables
Wðk Þd number of type k 2 K patients scheduled on day d
dd,n number of blockages if there are n

emergency patients in the hospital on day d
�oud ;n number of ward u off-unit patients on day

d if there are n emergency patients in ward u

The patient trajectory and census distribution
parameters are computed offline as explained earlier
in this section. Since the PALM model for emergency
patient bed demand is exogenous to the decision vari-
able, this too is calculated off-line, with the results
captured as pu,d(n) and �pdðnÞ. We consider a weekly
planning horizon that repeats itself every week, gen-
erating a cyclostationary system that varies by day of
week. The objective is to maximize the throughput of
the sum of elective patient admissions (over the plan-
ning horizon) of each type weighted by a “reward”
vector R (1 denotes a column vector of all ones). The
reward vector gives flexibility to allow the model to
treat one patient type differently from another, for
example, the model can prioritize one patient type
over another with respect to patient criticality, pro-
jected revenue generated by the admission, or other
strategic priority. The formulation is as follows:

max
H;d;d̂

R �W � 1; ðC1Þ

s.t.

dd1;n	n�
X
u2U

fu�
X7
d2¼1

X
k2K

WðkÞd2 �
X1
n0¼0

cðkÞu ð7n0 þd1�d2Þ
 !

;

d1¼ 1; . . .;7;n¼ 1;2; . . .

ðC2Þ

X7
d¼1

X1
n¼0

�pdðnÞdd;n� b; ðC3Þ

dd;nþ1	 dd;n d ¼ 1; . . .; 7; n ¼ 1; 2; . . .; ðC4Þ

�oud1;n	 nþ
X7
d2¼1

X
k2K

WðkÞd2 �
X1
n0¼0

cðkÞu ð7n0 þ d1 � d2Þ

� fu � gu
X7
d¼0

X1
n0¼0

dd;n0 � �pdðn0Þ

8u 2 U; d1 ¼ 1; . . .; 7; n ¼ 1; 2; . . .

; ðC5Þ

X1
n¼0

pu;dðnÞ�oud;n� ou 8u 2 U; d ¼ 1; . . .; 7; ðC6Þ

�oud;nþ1	 �oud;n d ¼ 1; . . .; 7; n ¼ 1; 2; . . .; ðC7Þ

X7
d¼1

WðkÞd 	
X7
d¼1

lðkÞd 8k 2 K; ðC8Þ

WðkÞd � �lðkÞd 8k 2 K; d ¼ 1; . . .; 7 ðC9Þ

WðkÞd ; dd;n; �o
u
d;n 2 Zþ

The constraints of this model are primarily for con-
straining the blockages faced by the patients, limiting
off-ward placement, and respecting the hospital
resource limits. Since the purpose of this work was to
demonstrate how CM can be improved by developing
methods that integrate with optimization, and not to
provide new optimization methods, we briefly describe
the optimization presented here. Greater detail regard-
ing this approach can be found in Helm and Van Oyen
(2014). Constraints (C2) calculate the number of blocked
patients at the hospital level if n emergency patients are
in the hospital on day d1. This sets the helper variable,
dd,n which is subsequently used to calculate expected
blockages according to the distribution on the emer-
gency patient bed demand stochastic process in the left-
hand side (LHS) of Constraints (C3) by multiplying the
indicator of whether the nth patient would be blocked
by the probability of seeing n emergency patients in the
hospital. The right-hand side constrains the expected
blocked patients to be less than some target level, b,
which can be chosen by management. Constraint (C4) is
a cut that is added to the formulation that significantly
improves model solution speed.
Similar to the constraints (C2–C4) for blockages, we

have constraints in C5–C7 for approximating and lim-
iting expected off-unit census. An additional term in
Equation (C5), guR

7
d¼0R

1
n0¼0dd;n0 � �pdðn0Þ, subtracted

from the otherwise expected number of off-unit cen-
sus gives patients who were blocked and not able to
be admitted to the hospital in the first place.
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Constraints in (C7) ensures that the proper mix of
patients is respected. Specifically, it ensures that each
patient type has at least as many admissions each
week as they did prior to optimization. Constraints
(C9) ensure that the model respects the hospital
resource capacity for a day. For example, hospitals
frequently avoid admitting elective patients on Sun-
days, which could be achieved by setting �lðkÞSunday ¼ 0.

Appendix D. Assigning Attributes to
Patients in Simulation Study
Here we elaborate on synthesis patient attributes for
simulation study in section 4. For brevity, we show it
for K = 4. In the data generation step for this problem,
after patient trajectories were generated from four
semi-Markov processes, three attributes, viz. age, gen-
der, and diagnosis (with three diagnoses being D1,
D2, and D3), were assigned to the patients such that
any attribute triplet has the possibility of being in any
cluster; for example, a 30-year-old female with diag-
nosis D1 could potentially be from any of the four
clusters. This resembles real-world challenges
involved in patient trajectory estimation by simulat-
ing the fact that two patients with the same attributes
may have different trajectories; that is, the attributes
are not adequately capturing patient heterogeneity. In
practice, patient attributes are capable of capturing
some of the patient heterogeneity so we ensure that
clusters contain patients whose attributes are mostly

similar by adhering to a near-Pareto principle (see the
three attribute generating tables in Table D1). That is,
clusters are composed mostly of similar patient attri-
butes with a mix of patients who have different attri-
butes. This distribution of attributes is designed to be
fair to the traditional approach and capture the reality
that attributes do have differentiating power, but can-
not completely specify a patients likely trajectory.
In section 6, we assign physical attributes to patient

for our simulation study. We perform a conservative
assignment, in favor of traditional patient clustering
method, by giving higher chance of patients within a
true cluster having similar attributes. Table D1 below
shows the generating distributions for the patient
attributes within each cluster. As shown in the table,
age is taken from a normal distribution with different
means (Table D1a), and sex and diagnosis
(Table D1b–D1c) are taken according to a Bernoulli
random variable with different success probabilities.
The distribution parameters are chosen such that
there is high attribute similarity (dissimilarity)
between patients within (between) clusters.

Appendix E. Empirical stimation of
Patient Trajectories
Once the clusters have been formed using k-means
clustering, the trajectory distribution is computed for
each cluster independently by normalizing the fre-
quency of transitions of patients between wards as
follows:

1. qðkÞu ¼
RN
n¼1jðy

ðnÞ
1

;uÞ
Ru02U ½RN

n¼1jðy
ðnÞ
1

;u0Þ�
for k 2 K and u 2 U.

2. P
ðkÞ
uj ¼

RN
n¼1�jujðyðnÞÞ

Rj02U ½RN
n¼1�juj0 ðyðnÞÞ�

for k 2 K; u 2 U and j 2 U.

3. H
ðkÞ
uj ðmÞ ¼

RN
n¼1~juj;mðyðnÞÞ

Rm02T ½RN
n¼1~juj;m0 ðyðnÞÞ�

for k 2 K; u 2 U, j 2 U
and m 2 T .
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